Multimodal targeting of tumor vasculature and cancer stem-like cells in sarcomas with VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy

نویسندگان

  • Changhwan Yoon
  • Kevin K. Chang
  • Jun Ho Lee
  • William D. Tap
  • Charles P. Hart
  • M. Celeste Simon
  • Sam S. Yoon
چکیده

Vascular endothelial growth factor A (VEGF-A) inhibition with pazopanib is an approved therapy for sarcomas, but likely results in compensatory pathways such as upregulation of hypoxia inducible factor 1α (HIF-1α). In addition, cancer stem-like cells can preferentially reside in hypoxic regions of tumors and be resistant to standard chemotherapies. In this study, we hypothesized that the combination of VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy with evofosfamide would be an effective multimodal strategy. Multimodal therapy was examined in one genetically engineered and two xenograft mouse models of sarcoma. In all three models, multimodal therapy showed greater efficacy than any single agent therapy or bimodality therapy in blocking tumor growth. Even after cessation of therapy, tumors treated with multimodal therapy remained relatively dormant for up to 2 months. Compared to the next best bimodality therapy, multimodal therapy caused 2.8-3.3 fold more DNA damage, 1.5-2.7 fold more overall apoptosis, and 2.3-3.6 fold more endothelial cell-specific apoptosis. Multimodal therapy also decreased microvessel density and HIF-1α activity by 85-90% and 79-89%, respectively, compared to controls. Sarcomas treated with multimodal therapy had 95-96% depletion of CD133(+) cancer stem-like ells compared to control tumors. Sarcoma cells grown as spheroids to enrich for CD133(+) cancer stem-like cells were more sensitive than monolayer cells to multimodal therapy in terms of DNA damage and apoptosis, especially under hypoxic conditions. Thus multimodal therapy of sarcomas with VEGF-A inhibition, HIF-1α inhibition, and hypoxia-activated chemotherapy effectively blocks sarcoma growth through inhibition of tumor vasculature and cancer stem-like cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model

Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...

متن کامل

Overcoming evasive resistance from vascular endothelial growth factor a inhibition in sarcomas by genetic or pharmacologic targeting of hypoxia-inducible factor 1α

Increased levels of hypoxia and hypoxia-inducible factor 1α (HIF-1α) in human sarcomas correlate with tumor progression and radiation resistance. Prolonged antiangiogenic therapy of tumors not only delays tumor growth but may also increase hypoxia and HIF-1α activity. In our recent clinical trial, treatment with the vascular endothelial growth factor A (VEGF-A) antibody, bevacizumab, followed b...

متن کامل

MFTZ-1 reduces constitutive and inducible HIF-1α accumulation and VEGF secretion independent of its topoisomerase II inhibition

The macrolide compound MFTZ-1 has been identified as a novel topoisomerase II (Top2) inhibitor with potent in vitro and in vivo anti-tumour activities. In this study, we further examined the effects of MFTZ-1 on hypoxia-inducible factor-1α (HIF-1α) accumulation, vascular endothelial growth factor (VEGF) secretion and angiogenesis. MFTZ-1 reduced HIF-1α accumulation driven by hypoxia or growth f...

متن کامل

The effects of 8 weeks aerobic training on HIF-1α, miR-21 and VEGF gene expression in female Balb/c with breast cancer

Background: Breast cancer, which is a major cancer for women, affects the angiogenesis process. Exercise training can decrease the process of angiogenesis in tumor tissue. The aim of present study was to investigate the effects of 8 weeks of aerobic training on HIF-1α, miR-21 and VEGF gene expression in female Balb/c mice with breast cancer. Materials and Methods: 16 female Balb/c mice (age: 3...

متن کامل

Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma

PURPOSE Expression of the hypoxia-inducible factor (HIF)-1-regulated gene product, vascular endothelial growth factor (VEGF), correlates with tumor vascularity in patients with uveal melanoma (UM). While the relationship between HIF-1 and VEGF in cancer is well-studied, their relative contribution to the angiogenic phenotype in UM has not previously been interrogated. Here we evaluate the contr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016